
Studying protein structure and binding using calorimetry
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Thermal denaturation
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Thermodynamic parameters of protein denaturation
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Enthalpy:
Determined from slope of Van't Hoff plot
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Entropy:
At Tm, the temperature of the mid-point of the 
transition (G0 = 0)
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Quiz 2: Thermal transitions

• Another small protein is 99% folded at 328K and 1 % folded at 340 K

• what is the standard enthalpy (H0) of its folding transition?

• also estimate the entropy of the transition (S0)!
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Heat capacity changes in protein denaturation
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Curvature in Van't Hoff relations: The native state 
and the denatured state have different heat 
capacities.

Protein unfolding heat capacity is large and positive

Heat capacity:
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Heat capacity of protein denaturation
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Definition of heat capacity:
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temperature dependent

Cp
0 is usually 40-80 J mol-1 K-1 per residue

The molecular origin of Cp
0 > 0:

The native and the denatured state exhibit differences in solvation

in D, hydrophobic residues are exposed. The water structure leads to high 
heat capacity (compare to Lecture 1)

related to m-value (also dependent on ASA)
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Measuring thermodynamic parameters: Differential Scanning 
Calorimetry (DSC)
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Measures amount of heat required 
to change the temperature in the 
sample vs. the reference.

For an adiabatic isolated 
microcalorimeter, no heat exchange 
takes place with the environment

0Q 

according to first law

dU dW
changes in internal energy solely 
depend on work within instrument



The partial molar heat capacity Cp
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The heat capacity is defined as the amount of heat (Q) required to 
change the temperature by dT with constant pressure.

Heat capacity of a protein solution CP,sol is a composite of partial 
molar heat capacity terms:
- Heat capacity of the solvent CP,1
- Heat capacity of the protein (e.g. non-covalent interactions) CP,2

From CP,2 we can determine the enthalpy of protein 
folding/unfolding (n denotes the molar amounts) 2
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Using calorimetry to determine protein stability
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Problem: CP,2 cannot be directly measured

From calorimetry, the apparent molar 
heat capacity (CP,app) is obtained

this is the difference between the 
heat capacity of the solution (CP,sol) 
and of the solvent (CP,1)
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this term can usually be neglected 
for employed protein concentrations 
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Determining heat capacity from calorimetry
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from normalized and calibrated difference follows the 
heat capacity change of protein unfolding
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vP : partial specific volume of protein
v1 : partial specific volume of solvent
h: normalization
k: calibration constant



Determining heat capacity from calorimetry
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Enthalpy of conversion in protein denaturation
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Hm(cal) of lysozyme denaturation as a 
function of pH

From integration of the curve 
the enthalpy of conversion 
(folded to unfolded) Hm(cal)
is determined
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model-free determination of 
enthalpy of state transition



Two-state folding or multistate transition?
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comparing the areas under the 
curve, an equilibrium constant can 
be determined.

From K, Van't Hoff Enthalpy can be 
determined immediately, using:

This assumes a two-state transition

Only in this case, Hm(cal) = H0vHHm(cal) of lysozyme denaturation as a 
function of pH



Entropy of conversion
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Hm(cal) of lysozyme denaturation as a 
function of pH

At the midpoint of the 
transition (Tm), the entropy can 
be determined

0G H T S     

m
m

m

HS
T


 

Tm



Heat capacity difference of unfolding
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can directly be obtained 
from the measured curve

pC

Can also be determined from 
the temperature dependence 
of Hm, e.g. measured under 
different pH

Rnase T1 denaturation data



The protein stability curve

8-Two state transitions p. 16

With heat capacity, the T-dependence of G0 becomes:
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The protein stability curve
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With heat capacity, the T-dependence of G0 becomes:
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The protein stability curve

Protein stability is maximal 
at S0 = 0 (TS)

KD (equilibrium constant) 
is maximal at H0 = 0 (TH)

The transition mid-point 
(Tm) is at G0=0 and fN = 
fU = 0.5
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Tm



Protein cold denaturation
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Can be observed for some proteins / mutants: 
Cold denaturation of lysozyme (destabilized mutant)

Protein stability curves show second Tm' at 
low temperature!  cold denaturation

Icefish



Using calorimetry to determine binding interactions
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The energy of a ligand-receptor 
interaction is determined by G :

... whereas G itself can be 
separated into enthalpy and 
entropy

degrees of 
freedom fixed!

Calorimetry directly informs on 
thermodynamic parameters ΔH and ΔS



Using calorimetry to determine binding interactions: Isothermal 
titration calorimetry ITC
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injection of ligand 
solution into receptor 
solution

ln DG RT K 
G H T S    



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

all injected ligand is bound

binding energy is released 
and is measured as heat

ln DG RT K 
G H T S    

heat (qi) 
detected!



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

all injected ligand is bound

binding energy is released 
and is measured as heat

ln DG RT K 
G H T S    

heat (qi) 
detected!



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

around the Kd, no longer all 
ligand is bound, less heat is 
released

ln DG RT K 
G H T S    

heat (qi) 
detected!



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

around the Kd, no longer all 
ligand is bound, less heat is 
released

ln DG RT K 
G H T S    

heat (qi) 
detected!



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

measurement of heat 
of binding



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

measurement of heat 
of binding

Analysis:

heat released (absorbed) for each 
injection
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Vc : volume 
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ITC: Binding to n independent, equal sites
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total heat released
(complete integral of curve):
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Simulated ITC traces
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Kd 1.00E-09

L (start) 5.00E-09
R 1.00E-07
n 1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.5 1 1.5 2

dQ
/d

L

[L]/[R]

Simulated ITC trace



ITC can give informations about binding mechanisms
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…all three binding reactions have 
the same G.

A) good hydrogen bonding 
(enthalpy) and unfavorable 
conformational changes.

B) Hydrophobic interactions drive 
binding

C) both favorable enthalpic 
interactions and hydrophobic 
interactions



Isothermal titration calorimetry
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injection of ligand 
solution into receptor 
solution

measurement of heat 
of binding

Fitting to appropriate model: 
determination of all parameters 
of a binding reaction



for useful traces, [Rtot]/KD * n = 5 to 500 (10 to 
100 ideal)



In cells, interactions are managed by compartmentalization
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David Goodsell


